资讯

西安

课程咨询: 4000-121-121

预约初高体验课 享受高端1对1在线辅导

各位家长请注意:此表单用于预约体验课,不想预约的家长,请勿填写

获取验证码

请选择意向校区

请选择年级

请选择科目

立即体验
当前位置:家教西安站 > 中学辅导 > 正文

2020初中数学学习技巧:欧几里得和他的《几何原本》

2020-03-04 15:11:33  来源:学而思爱智康

了解爱智康在线1对1/8人班课

报名3次课 专属福利随意领

预约体验

* 爱智康会在1个工作日内与您取得联系

— — 报名课程可获得 — —

海量免费试题资料

干货公开课视频

标准化考点串讲

综合题型能力训练

尽管我们对古希腊数学家欧几里得了解不多,但我们知道他生活在希腊统治下埃及的亚历山大城,他因写了极具开创性的《几何原本》而闻名于世。欧几里德的平面几何五大公理是什么?欧几里得的《几何原本》无疑是有史以来最重要的数学著作之一,一直到19世纪这本书都被认为是所有学者的基础读物。欧几里得和他的《几何原本》都有什么?小智老师为你整理了初中数学学习技巧:欧几里得和他的《几何原本》。

初等证明

虽然欧几里得吸收了他人的想法,但他是第一个利用数理逻辑去证明理论的数学家。这种证明的思想是数学的基础之一。

《几何原本》涵盖大量几何方面的内容,还有一些对数的思考,其中包括质数及其他数列,同时,欧几里得书中的所有几何图形都是通过尺规来构建的。

这一著作被分为十三卷,每一卷的起始部分都是一些定义。有了这些定义,当欧几里得提及点、线、垂直、平面等词语时,读者都能够有个清晰的概念。然后,欧几里得会陈述一系列显然为真的的公理与命题,例如,“所有的直角都是相等的”和“如果A=B,A=C,那么B=C”。

《几何原本》的下一部分称作“命题”,在这里欧几里得会提出一种解决某个数学问题的方法。例如,在卷一的第一个命题里,欧几里得介绍如何画出一个等边三角形(所有的边相等,所有的角都等于),之后他继续去证明为什么那是一个等边三角形。

欧几里德的平面几何五大公理是什么?

欧几里德的《几何原本》,一开始欧几里德就劈头盖脸地给出了23个定义,5个公设,5个公理.其实他说的公社就是我们后来所说的公理,他的公理是一些计算和证明用到的方法(如公理1:等于同一个量的量相等,公理5:整体大于局部等)他给出的5个公设倒是和几何学非常紧密的,也就是后来我们教科书中的公理.分别是:

公设1:任意一点到另外任意一点可以画直线

公设2:一条有限线段可以继续延长

公设3:以任意点为心及任意的距离可以画圆

公设4:凡直角都彼此相等

公设5:同平面内一条直线和另外两条直线相交,若在某一侧的两个内角和小于二直角的和,则这二直线经无限延长后在这一侧相交.

在这五个公设理里,欧几里德并没有幼稚地假定定义的存在和彼此相容.亚里士多德就指出,头三个公设说的是可以构造线和圆,所以他是对两件东西顿在性的声明.事实上欧几里德用这种构造法证明很多命题.第五个公设非常罗嗦,没有前四个简洁好懂.声明的也不是存在的东西,而是欧几里德自己想的东西.这就足以说明他的天才.从欧几里德提出这个公理到1800年这大约2100年的时间里虽然人们没有怀疑整个体系的正确性,但是对这个第五公设却一直耿耿于怀.很多数学家想把这个公设从这个体系中去掉,但是几经努力而无果,无法从其他公设中推到处第五公设.

同时数学家们也注意到了这个公设既是对平行概念的论述(故称之为平行公理)也是对三角形内角和的论述(即内角和公理).高斯对这一点是非常明白的,他认为欧几里德几何式物质空间的几何,1799年他说给他的朋友的一封信中表现了他相信平行公里不能从其他的公设中推导出来,他开始认真从事开发一个新的能够应用的几何.1813年,发展了他几何,最初称为反欧氏几何,后称星空几何,最后称非欧几何.在他的几何中三角形内角可以大于180度.当然得到这样的几何不是高斯一人,历史上有三个人.一个是他的搭档,另一个是高斯的朋友的儿子独立发现的.其中一个有趣的问题是,非欧氏几何中过直线外一点的平行线可以无穷.

不久之后,俄国的一位著名数学家也发现了一个新的非欧几何,即罗氏几何.他的三角形内角和是小于180度的.

而19世纪初非欧式几何的发现,正是后来爱因斯坦发现广义相对论的基础.

意见反馈电话:010-52926893  邮箱:advice@xueersi.com
保存 | 打印 | 关闭
相关新闻
课程活动
  • 8人班
  • 1对1